
Final Report
Implementation of GPLAG[1] and comparison versus widely available tools for

plagiarism detection in student code submissions

Nicolas Montanaro

1 Initial proposal

1.1 Summary of initial proposal

With the increasing popularity of the computer
science field and related disciplines, we’re ob-
serving that enrollment in STEM majors for
universities across the country is increasing
rapidly year after year. Many of these fields of
study require some knowledge of computer pro-
gramming. Foundational programming knowl-
edge is not exclusive to computer scientists and
software engineers - future electrical engineers,
bioinformaticists, mathematicians, 3D artists
amongst others all benefit greatly from basic
programming knowledge. In order to meet this
growing demand, the popularity of MOOCs
(massive open online courses) has drastically in-
creased. Websites like Coursera offer a plethora
of courses - often developed at major univer-
sities - for free to people online. How do we
enable these students to learn effectively and
receive helpful feedback for a topic that is, for
many, very difficult? By examining the re-
lated problem of code cloning, we may be able
to find a solution. The code cloning problem
deals with the detection of similar patterns of
code. Imagine for a moment we copy a par-
ticular function from one piece of code across
multiple others. Each time we copy it, it is
modified slightly to fit this particular usage.
However, we later discover that our original
algorithm - the one we copied several times
- has an error. How can we detect the code
we copied, and is there a way we can make

our changes to the original block of code but
have it modify all of the other instances? Us-
ing a combination of existing techniques to de-
tect code cloning in combination with relatively
new techniques of subgraph alignment applied
to analyzing student submissions for introduc-
tory computer programming assignments, can
we effectively create a system that allows for
graders to easily grade hundreds of submis-
sions at once? By using techniques that com-
pare Program Dependency Graphs representing
multiple student submissions against one solu-
tion in combination with graph alignment tech-
niques, we should be able to determine the ef-
fectiveness of detecting errors in student sub-
missions and providing meaningful feedback to
many students at once.

1.2 Modifications to initial pro-
posal

The initial proposal focused largely on provid-
ing personalized feedback for students taking
online programming MOOCs. This would have
been done using an existing method of subgraph
matching using Program Dependence Graphs
and graph alignment.

It was eventually determined, as we’ll see,
that through some explorations as part of com-
piling the milestones that this goal wasn’t par-
ticularly useful. A fully implemented personal-
ized student feedback system would have been
fantastic but was too broad and lofty a goal
for the scope of this independent study. In-
stead, I decided to focus on the filter-less im-

1

plementation of the GPLAG[1] algorithm and
how it compares to the more commonly used
JPlag[2] and conQAT[3] tools for code clone de-
tection, specifically for the use case of detecting
plagiarized code in student submissions. The
functionality of detecting "plagiarized" pieces
of code can easily be extended to providing per-
sonalized feedback.

2 Major milestones

2.1 SourcererCC investigation

2.1.1 Introduction

For the first milestone of this independent study
current code-cloning detection algorithms and
software were investigated. The state-of-the-art
for code cloning detection is SourcererCC [4].
Despite being the leading tool for code-cloning
detection, the available documentation [5] for
practical running of the project and analysis of
the results is somewhat sparse. The purpose
of this milestone was to create a simple to use
repository containing all necessary components
to run SourcererCC on our datasets. Initial
runs of the program using the datasets we’ve
compiled previously have shown mixed results.

2.1.2 Algorithm

SourcererCC’s proposal paper provides evi-
dence enough that it is the cutting-edge of
code-cloning techniques. It was tested against
four other publicly available tools: CCFind-
erX [6], Deckard [7], iClones [8], and NiCad
[9]. CCFinderX is cited as being a popular
and reasonably effective tool to detect identical
fragments of code minus whitespaces, tabs, and
comments, and difference in identifier names
and literal values. The other three tools are
used for comparison using code that is syntac-
tically similar in addition to all of the previous
constraints. Each one of these tools takes quite
a different approach to detecting clones and is
used for different types of clone detection. Fig-

ure 1, taken from [4], shows SourcererCC’s de-
tection process.

Figure 1: SourcererCC’s clone detection process

SourcererCC’s method of detecting code
clones is actually functionally very similar to
other widely-available tools, as we’ll see shortly.
The two primary steps necessary to perform de-
tection in the tool itself are:

1. Tokenization, during which input files
are parsed and converted into token
strings. Tokenization for three languages
are supported: Java, Scheme, and C++.

2. Greedy String Tiling, the algorithm
for which is shown in Figure 4, during
which each token string is attempted to
be "covered" by another substring from
a different file as well as possible. Per-
centage coverage is used as the similarity
metric between the source files.

2.1.3 Results

The datasets we have previously compiled for
use with studying graph alignment techniques
were used for testing the capabilities of Sourcer-
erCC. The data is Java solutions for code prob-
lems posted on CodeChef.com. Figures 2 and 3
show the results of running the tool on two of
our datasets with a threshold of 80% similarity.

2

CodeChef.com

Figure 2: CSV output of running SCC with
RGAME dataset

Figure 3: CSV output of running SCC with
CIELRCPT dataset

The meaning of these outputs are not spec-
ified anywhere in the documentation for the
tool, nor in the paper introducing the tool. In
addition, while the two tables have a different
number of rows, the first four rows are identi-
cal in both instances. This suggests the tool is
not working properly with the datasets being
passed to it. A number of different parameters
and runs were performed, all with the same re-
sults. Even lowering the threshold to 0 did not
change the results, and the results we are get-
ting cannot be properly interpreted.

2.1.4 Post-mortem

This milestone was primarily helpful in figur-
ing out what direction to avoid going in. The
source code for SourcererCC is very complex
and almost no documentation is provided. The
paper focuses mostly on performance rather
than usage. Even though the GitHub page[5]
provides documentation for running the tool -

which I was able to do successfully - there is no
outline for how to interpret the results. Addi-
tionally, there is no information given while the
tool is being run, or specification for how the
input files need to be formatted. Based on the
results of this milestone and conversations with
Prof. Rivero I decided to head in a different
direction.

2.2 Current solutions vs. GPLAG

2.2.1 Introduction

The goal of the second milestone of this inde-
pdendent study was to specify the end goal of
the project, familiarize myself with a number
of other existing tools used for code-clone de-
tection, learn about possible improvements to
the current state-of-the-art, and begin imple-
mentation of an alternative. The examined ex-
isting tools are JPlag [2] and conQAT [3] which
both use tokenization for plagiarism detection.
Next, I learned about GPLAG [1] and how it re-
lated to graph-alignment and subgraph match-
ing techniques to detect plagiarism, whether the
code samples be semantically or syntactically
similar.

2.2.2 JPlag & conQAT: Tokenization-
based Approaches to Clone Detec-
tion

JPlag has existed since 2001 and uses a
tokenization-based approach to detecting pla-
giarism between source code files. The two
steps performed for this are:

1. Tokenization, during which input files
are parsed and converted into token
strings. Tokenization for three languages
are supported: Java, Scheme, and C++.

2. Greedy String Tiling, the algorithm
for which is shown in Figure 4, during
which each token string is attempted to
be "covered" by another substring from

3

a different file as well as possible. Per-
centage coverage is used as the similarity
metric between the source files.

Figure 4: Greedy string tiling pseudocode

These two steps are actually almost identi-
cal to SourcererCC’s process of code clone de-
tection - first tokenization, followed by compar-
ison of tokens between source files. The pri-
mary difference is that SourcererCC allows for
custom tokenization files to be input making it
language independent.

conQAT is comparatively much younger
having been released in 2013. While similar
to JPlag in that it tokenizes the source code
it instead uses token comparison to a generated
suffix-tree. This is actually the same method
used by another clone detection tool, iClones
[8]. We can see an example output provided
on the conQAT website of a detected clone in
Figure 5. This is similar to the visual output
provided by JPlag as can be seen in Figure 6.

Figure 5: conQAT’s visual clone detection output

4

Figure 6: JPlag’s visual clone detection output

2.2.3 Problems with Tokenization Ap-
proach

The tokenization-based approach to detecting
code clones is currently the most popular. Sev-
eral well-known and widely-used tools exist like
JPlag, SourcererCC, and conQAT. They all
deal with the tokenized data in different ways
but they share one thing in common: tokeniza-
tion is performed as a pre-processing step, and
tokens are the data structure used to detect
clones in the code. The primary problem with
this approach is that it does not deal with the
semantic similarities of source files, just the
syntactic similarities. Examining the common
techniques used by plagiarists, as outlined in
the GPLAG paper[1], can help us understand
the types of differences present in code. This,

in turn, will allow for more semantic matching
to be done using graph-alignment techniques to
provide student feedback for MOOC program-
ming classes. The five categories of plagiarism
disguises are:

1. Format alteration, in which items typ-
ically discarded by the compiler such as
whitespace and comments are changed.

2. Identifier renaming, in which variables
or function names are changed.

3. Statement reordering, in which snip-
pets of code that are not dependent on
previous code are moved around. Most
commonly, location of function definitions
in source files are changed.

5

4. Control replacement, in which a con-
trol structure is replaced with a logi-
cally equivalent one. For example, a for
loop being replace by an equivalent while
loop, or if statements being replaced by
logically equivalent checks that evaluate
the same way.

5. Code insertion, in which additional
code not present in the original is inserted
into the clone. Can’t alter the logic struc-
ture of the original.

Tokenization is able to detect renamed vari-
ables and functions well because they rely on
the types being mapped to the tokens rather
than relying purely on the content of the
strings. However, tokenization isn’t able to cap-
ture differences in control flow when modified -
for loops replaced with while loops won’t be
detected because they will be tokenized differ-
ently. Similarly, code insertion and statement
reordering will also break tokenization in many
cases.

2.2.4 Program Dependency Graph Ap-
proach

An approach that forgoes all of the issues as-
sociated with tokenization for detecting code
clones is using program dependence graphs.
Figure 7 shows an example of converting source
code to a PDG, taken from the GPLAG paper.

Figure 7: Example source code and generated
PDG

When we convert our source files to a pro-
gram dependence graph the problem of code

detection becomes synonymous with the prob-
lem of subgraph isomorphism detection. Al-
though this is a known NP-complete problem
the GPLAG algorithm uses two types of filter-
ing to reduce the search space and allow us to
find isomorphs in a reasonable amount of time.
They are as follows:

1. Lossless filtering: we ignore subgraph
matches of size smaller than K. Ad-
ditionally, all PDG pairs that are not
γ−isomorphic are discarded. The defini-
tion of γ−isomorphism is provided in [1].

2. Lossy filtering: sufficiently dissimilar
PDG pairs are discarded. The details of
lossless filtering are a bit complex but the
details be found in [1].

The pseudocode for GPLAG’s algorithm
with my additional annotation can be seen in
Figure 8. The algorithm requires quite a bit of
pre-processing in that the PDGs need to be gen-
erated in advance. The authors of the paper use
CodeSurfer 1 for PDG generation which we do
not have access to. However, the Graph Align-
ment implementation we have access to includes
basic generation of PDGs.

Figure 8: Example source code and generated
PDG

1http://grammatech.com

6

2.2.5 Post-mortem

This milestone was extremely helpful. It gave
me a much clearer direction on where to go for
the remainder of the semester. SourcererCC
was not particularly promising and didn’t seem
to offer much beyond what existing tools offer,
granted, no 1:1 benchmark was ever performed.
Implementing GPLAG was a feasible goal given
the amount of time remaining in the semester
and it boasted very good performance while
really only being a modification of GraphQL,
a topic covered and implemented as a part of
CSCI 729.

3 GPLAG

3.1 Implementation

Algorithm 1 GPLAG(D, Q, γ, t)
Input : D: The Data PDG

Q: The Query PDG
γ: The gamma threshold
t: The percentage plagiarized thresh-
old

Output: true: plagiarism detected
false: plagiarism not detected

Q’ = Q \{v};
if |Q′| ≥ γ |D| then

if SubgraphMatching(D, Q’, t) then
return true

else
GPLAG(D, Q’, γ, t)

end
else

return false
end

The GPLAG algorithm is a naive version of the
algorithm described in [1]. The inputs are a
data and query PDG which are represented us-
ing the JGraphT library. γ is the threshold pro-
posed in [1] that effectively reduces our search
space by only checking for subgraph matches

when |Q′| ≥ γ|D|. t is the threshold to per-
form SubgraphMatching with. If a subgraph is
found but |solution| < t, the match is ignored.
This prevents us from considering trivial sub-
graph matches as candidates for plagiarism.

3.1.1 Caveats & improvements

The original paper has an additional step of fur-
ther reducing the search space of the algorithm
by way of what they call lossless and lossy fil-
tering. The implementation I used did not use
either of these. Lossless filtering would be easy
to implement going forward since it is simply
ignoring subgraph matches of size smaller than
some value K. Lossy filtering is much more
complex and does not seem like it would offer
significant benefit except on very large query
and data graphs.

Perhaps the largest improvement that could
be made is a more intelligent method of vertex
removal in the creation of Q′. Because this im-
plementation is randomly removing a vertex v
to generate Q′, there is the possibility of remov-
ing a vertex that makes the graph disconnected,
or removing vertices that would otherwise be in
the solution space. This is the primary reason
why, as we’ll see in section 4.2, GPLAG some-
times detects completely different source files
are plagiarized.

4 Comparisons

4.1 Dataset

The dataset these comparisons were performed
was unfortunately quite small. The PDG gen-
eration tool used in the GPLAG implementa-
tion was ported from previous work performed
by another student. It is highly dependent on
the source files being structured in a particu-
lar way. Because of this I wasn’t able to test
GPLAG, conQAT and JPlag on a large, real-
world dataset.

Instead, 8 source files were used with one
being considered the "Reference" file. One file

7

is completely different both semantically and
syntactically from the reference file and should
not be detected as plagiarized. The other files
are either partially or largely plagiarized and
should be detected as having plagiarized code
present to the point where they are not consid-
ered original.

4.2 GPLAG benchmarks

To test the GPLAG implementation, source
files were compared to a reference file and a pos-
itive or negative output was counted. Because
the implementation randomly removes nodes at
every recursive step false positives are occasion-
ally detected even when the source file is com-
pletely different than the reference. This is an
expected behavior and can only be solved by
determining a way to remove leaf nodes only,
and avoid the removal of nodes that are likely
in the solution space.

Testing with unplagiarized source
Trial FP N % incorrect

1 58 942 5.8
2 60 940 6
3 74 926 7.4
4 44 956 4.4
5 46 954 4.6
6 56 946 5.6
7 51 949 5.1
8 55 945 5.5
9 53 947 5.3
10 55 945 5.5

Table 1: Results of running GPLAG with com-
pletely different source and reference files. FP
= false positives, N = negatives. % incorrect
calculated by dividing false positives by 1000.

Table 1 shows the results of running
GPLAG with a completely different source and
reference file. Ten trials were performed. Each
trial consisted of running GPLAG on the source
file 1000 times with γ set to 0.8 and the thresh-
old set to 0.9. Since the source file is in no way

similar to the reference file, ideally the number
of false positives for each trial would be zero.
Because of the random removal of nodes we in-
stead see the percentage of false positives to
average ≈ 5.5%.

When the source file was semantically very
similar to the reference file and therefore clearly
plagiarized the false positive rate drops to 0%.
The code was correctly detected as plagiarized
all 1000 times for every trial.

Since this implementation of GPLAG ran-
domly removes nodes the only way to accu-
rately detect if a particular file is plagiarized
when compared to the source would be to run
the algorithm several times with the same input
files and mark the source as plagiarized if above
a certain threshold. While not ideal, this has
proven to be effective, and since the percentage
incorrect is relatively low it doesn’t pose too
much of a problem.

The most glaring issue with this implemen-
tation is slow running time. Since there is al-
ways a chance of detecting a false positive the
only way to accurately categorize a particular
file as plagiarized or not is to run the algorithm
multiple times over the same files. This greatly
increases the time it takes for the algorithm to
complete running and generate output that can
be trusted. Again, it should be stressed that
this is a problem with the implementation per-
formed for this study, not with the original al-
gorithm presented in the paper.

4.3 JPlag benchmarks

JPlag results were mixed. Since JPlag uses a
tokenization-based approach to detecting pla-
giarized code it is susceptible to falling short
when a number of simple obfuscation tech-
niques are used.

8

Figure 9: Comparison between
Reference.java and Other4.java. Other4
should be considered plagiarized because of the
semantic similarities it shares with Reference,
but instead JPlag only detects a minimal
amount of similarity.

As we can see in Figure 9, Other4.java
is only considered 28.5% similar to
Reference.java. In reality, the semantic sim-
ilarity between these two files is identical. In-
deed, they will print the exact same results.
JPlag is thus fails due to control replace-
ment and statement reordering, two pla-
giarism techniques discussed in the original pa-
per for GPLAG and cited as major reasons
why tokenization-based detection tools are not
robust enough.

In comparison, when the GPLAG imple-
mentation is run over these two files, it detects
Other4.java as plagiarized 100% of the time.
This is an ideal result even without implemen-
tation of lossy and lossless filtering.

4.4 conQAT benchmarks

conQAT results were poor compared to
GPLAG and JPlag. Additionally, conQAT is
released as a modified complete distribution of
Eclipse. The Eclipse version being used is some-
what old and had trouble running on newer ma-

cOS and Windows distributions. This further
brings its usefulness into question.

Figure 10: conQAT results from running over
all source files. Other2.java is identical to
Reference.java except for 1 line but is not
detected as a clone. Other4.java is correctly
detected as a clone, but only with Other3.java
and only one line is detected as cloned.

Strangely, Other2.java is not de-
tected as a clone of any other file despite
Reference.java being identical except for one
line. Other4.java is correctly detected as be-
ing a clone unlike in JPlag, but this is only
because it detects one line as being cloned from
Other3.java, not Reference.java.

conQAT’s results aren’t particularly robust
and are somewhat confusing. The Eclipse fron-
tend is somewhat more helpful in that it is sim-
ilar to JPlag’s side-by-side view - however, this
doesn’t matter much since the clone detection is
clearly not as thorough as JPlag and completely
pales in comparison to the GPLAG implemen-
tation.

5 Conclusions

5.1 GPLAG effectiveness

The results have definitively shown that even a
naive implementation of the GPLAG algorithm
is extremely effective at detecting both syn-
tactic and semantic similarities between Java
source code files. Although the naive implemen-
tation does return false positives the margin of
error is calculable and can be circumvented by
implementing a simple post-execution check.

9

JPlag is currently the most widely-used tool
for detecting plagiarism in student code sub-
missions. However, as we’ve seen, it fails to
detect code that is clearly semantically identi-
cal to other submissions. This presents a huge
gap in its effectiveness - plagiarists can simply
change control flow and reorder statements to
avoid detection entirely. It only performs con-
sistently well for detection of copy and pasted
code but simply is not robust enough to detect
skilled plagiarists. Even worse would be its per-
formance in the setting of detecting small por-
tions of potentially stolen code that could exist
in a corporate environment.

conQAT is not as widely used and the re-
sults I received from running it over the dataset
were poor. However, it does have a rather com-
prehensive library of report generation scripts
and I also imagine it would run more effectively
over a larger dataset. It likely serves a some-
what different purpose as a tool, though, and
this is apparent in the manner it is distributed.
Being bundled together as a modified version of
Eclipse is not a very modular way to distribute
the software and probably wouldn’t be practi-
cal in the case of running clone detection over
huge codebases.

5.2 Future work

The naive implementation of GPLAG created
as a part of this independent study can be im-
proved in two major ways: adding lossy and
lossless filtering, and intelligent removal of ver-
tices from the query graph at the beginning of
each recursive iteration.

GPLAG is a relatively simple algorithm but
lacks any sort of intuitive report generation. I
dealt with counters and console outputs to de-
termine what it was doing. Both conQAT and
JPlag have helpful frontends and generate very

thorough, easy to comprehend HTML reports
containing all detected clones and side-by-side
comparisons of pieces of code. A more com-
prehensive reporting system for GPLAG would
allow it to be used by a much wider audience.

The comparisons and benchmarks per-
formed during this study were not on a large
dataset. While the results I ended up with
were interesting a more accurate representation
of the performance of the three tools can only
be obtained by running them with a larger real-
world dataset.

A different method of PDG generation is
also worth investigating. This is a key com-
ponent of GPLAG’s effectiveness. There are
many ways to generate PDGs. The implemen-
tation used for this study is quite simple. The
GPLAG authors themselves use CodeSurfer to
generate the PDGs. The biggest problem with
the PDG generator used for this study was how
picky it is about source file formatting. A very
large dataset of student code submissions will
naturally have an extreme amount of variabil-
ity in syntax and it would not be realistic to go
through each source file and make it conform
to the standards required by the PDG genera-
tor. Aside from being tedious this may actually
change the results to not be representative of
the actual effectiveness of GPLAG.

There is clearly a gap in the effectiveness of
plagiarism detection and code-cloning tools de-
spite the problems being very closely related.
While the results obtained as a result of this
study were preliminary they are very promis-
ing and confirm the effectiveness of GPLAG as
claimed by the authors of the original paper.
Development of a publicly available tool that
uses a full implementation of of the algorithm
would no doubt beat what is currently being
used.

10

A Time breakdown
Time breakdown

Task Time (hours)
Understanding current code

cloning techniques
≈ 10

Report summarizing current
techniques

≈ 20

Research of alternatives ≈ 20
GPLAG implementation ≈ 40
Testing, benchmarking of
GPLAG and other tools

≈ 20

Drawing conclusions & next
steps, creating final report

≈ 20

References
[1] Chao Liu, Chen Chen, Jiawei Han, and Philip S. Yu. Gplag: Detection of software plagiarism

by program dependence graph analysis. In Proceedings of the 12th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, KDD ’06, pages 872–881, New
York, NY, USA, 2006. ACM.

[2] Lutz Prechelt, Guido Malpohl, and Michael Philippsen. Finding plagiarisms among a set of
programs with jplag. 8(11):1016–1038, nov 2002.

[3] CQSE GmbH. conQAT Overview. CQSE GmbH Website, 2017.
https://www.cqse.eu/en/products/conqat/overview/.

[4] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes. SourcererCC: Scaling Code
Clone Detection to Big Code. ArXiv e-prints, December 2015.

[5] Mondego. Sourcerer CC. GitHub repository, 2016.

[6] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: a multilinguistic token-based code clone
detection system for large scale source code. IEEE Transactions on Software Engineering,
28(7):654–670, Jul 2002.

[7] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. Deckard: Scalable and accurate tree-based de-
tection of code clones. In 29th International Conference on Software Engineering (ICSE’07),
pages 96–105, May 2007.

[8] Nils Göde and Rainer Koschke. Incremental clone detection. In Proceedings of the 2009
European Conference on Software Maintenance and Reengineering, CSMR ’09, pages 219–
228, Washington, DC, USA, 2009. IEEE Computer Society.

[9] J. R. Cordy and C. K. Roy. The nicad clone detector. In 2011 IEEE 19th International
Conference on Program Comprehension, pages 219–220, June 2011.

11

h

	Initial proposal
	Summary of initial proposal
	Modifications to initial proposal

	Major milestones
	SourcererCC investigation
	Introduction
	Algorithm
	Results
	Post-mortem

	Current solutions vs. GPLAG
	Introduction
	JPlag & conQAT: Tokenization-based Approaches to Clone Detection
	Problems with Tokenization Approach
	Program Dependency Graph Approach
	Post-mortem

	GPLAG
	Implementation
	Caveats & improvements

	Comparisons
	Dataset
	GPLAG benchmarks
	JPlag benchmarks
	conQAT benchmarks

	Conclusions
	GPLAG effectiveness
	Future work

	Time breakdown

